Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deviation Based Pooling Strategies For Full Reference Image Quality Assessment (1504.06786v2)

Published 26 Apr 2015 in cs.MM and cs.CV

Abstract: The state-of-the-art pooling strategies for perceptual image quality assessment (IQA) are based on the mean and the weighted mean. They are robust pooling strategies which usually provide a moderate to high performance for different IQAs. Recently, standard deviation (SD) pooling was also proposed. Although, this deviation pooling provides a very high performance for a few IQAs, its performance is lower than mean poolings for many other IQAs. In this paper, we propose to use the mean absolute deviation (MAD) and show that it is a more robust and accurate pooling strategy for a wider range of IQAs. In fact, MAD pooling has the advantages of both mean pooling and SD pooling. The joint computation and use of the MAD and SD pooling strategies is also considered in this paper. Experimental results provide useful information on the choice of the proper deviation pooling strategy for different IQA models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.