Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Comparative Study of Quality and Content-Based Spatial Pooling Strategies in Image Quality Assessment (1811.08891v1)

Published 21 Nov 2018 in eess.IV, cs.CV, cs.MM, and eess.SP

Abstract: The process of quantifying image quality consists of engineering the quality features and pooling these features to obtain a value or a map. There has been a significant research interest in designing the quality features but pooling is usually overlooked compared to feature design. In this work, we compare the state of the art quality and content-based spatial pooling strategies and show that although features are the key in any image quality assessment, pooling also matters. We also propose a quality-based spatial pooling strategy that is based on linearly weighted percentile pooling (WPP). Pooling strategies are analyzed for squared error, SSIM and PerSIM in LIVE, multiply distorted LIVE and TID2013 image databases.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.