Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

cosmoabc: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation (1504.06129v4)

Published 23 Apr 2015 in astro-ph.CO and astro-ph.IM

Abstract: Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogues. Here we present cosmoabc, a Python ABC sampler featuring a Population Monte Carlo (PMC) variation of the original ABC algorithm, which uses an adaptive importance sampling scheme. The code is very flexible and can be easily coupled to an external simulator, while allowing to incorporate arbitrary distance and prior functions. As an example of practical application, we coupled cosmoabc with the numcosmo library and demonstrate how it can be used to estimate posterior probability distributions over cosmological parameters based on measurements of galaxy clusters number counts without computing the likelihood function. cosmoabc is published under the GPLv3 license on PyPI and GitHub and documentation is available at http://goo.gl/SmB8EX

Citations (78)

Summary

We haven't generated a summary for this paper yet.