Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Nudging: Solving Average-Reward Semi-Markov Decision Processes as a Minimal Sequence of Cumulative Tasks (1504.05122v1)

Published 20 Apr 2015 in cs.LG and cs.AI

Abstract: This paper describes a novel method to solve average-reward semi-Markov decision processes, by reducing them to a minimal sequence of cumulative reward problems. The usual solution methods for this type of problems update the gain (optimal average reward) immediately after observing the result of taking an action. The alternative introduced, optimal nudging, relies instead on setting the gain to some fixed value, which transitorily makes the problem a cumulative-reward task, solving it by any standard reinforcement learning method, and only then updating the gain in a way that minimizes uncertainty in a minmax sense. The rule for optimal gain update is derived by exploiting the geometric features of the w-l space, a simple mapping of the space of policies. The total number of cumulative reward tasks that need to be solved is shown to be small. Some experiments are presented to explore the features of the algorithm and to compare its performance with other approaches.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.