Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring Bayesian Models for Multi-level Clustering of Hierarchically Grouped Sequential Data (1504.04850v1)

Published 19 Apr 2015 in cs.LG and cs.AI

Abstract: A wide range of Bayesian models have been proposed for data that is divided hierarchically into groups. These models aim to cluster the data at different levels of grouping, by assigning a mixture component to each datapoint, and a mixture distribution to each group. Multi-level clustering is facilitated by the sharing of these components and distributions by the groups. In this paper, we introduce the concept of Degree of Sharing (DoS) for the mixture components and distributions, with an aim to analyze and classify various existing models. Next we introduce a generalized hierarchical Bayesian model, of which the existing models can be shown to be special cases. Unlike most of these models, our model takes into account the sequential nature of the data, and various other temporal structures at different levels while assigning mixture components and distributions. We show one specialization of this model aimed at hierarchical segmentation of news transcripts, and present a Gibbs Sampling based inference algorithm for it. We also show experimentally that the proposed model outperforms existing models for the same task.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube