Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Variation of Collective Attention in Hashtag Spike Trains (1504.01637v1)

Published 7 Apr 2015 in cs.SI and cs.CY

Abstract: In this paper, we propose a methodology quantifying temporal patterns of nonlinear hashtag time series. Our approach is based on an analogy between neuron spikes and hashtag diffusion. We adopt the local variation, originally developed to analyze local time delays in neuron spike trains. We show that the local variation successfully characterizes nonlinear features of hashtag spike trains such as burstiness and regularity. We apply this understanding in an extreme social event and are able to observe temporal evaluation of online collective attention of Twitter users to that event.

Citations (1)

Summary

We haven't generated a summary for this paper yet.