2000 character limit reached
Auslander-Yorke dichotomy theorem, multi-sensitivity and Lyapunov numbers (1504.00587v2)
Published 2 Apr 2015 in math.DS
Abstract: In this paper we study several stronger forms of sensitivity for continuous surjective selfmaps on compact metric spaces and relations between them. The main result of the paper states that a minimal system is either multi-sensitive or an almost one-to-one extension of its maximal equicontinuous factor, which is an analog of the Auslander-Yorke dichotomy theorem. For minimal dynamical systems, we also show that all notions of thick sensitivity, multi-sensitivity and thickly syndetical sensitivity are equivalent, and all of them are much stronger than sensitivity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.