Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Modified Apriori Approach for Web Document Clustering (1503.08463v1)

Published 29 Mar 2015 in cs.IR

Abstract: The traditional apriori algorithm can be used for clustering the web documents based on the association technique of data mining. But this algorithm has several limitations due to repeated database scans and its weak association rule analysis. In modern world of large databases, efficiency of traditional apriori algorithm would reduce manifolds. In this paper, we proposed a new modified apriori approach by cutting down the repeated database scans and improving association analysis of traditional apriori algorithm to cluster the web documents. Further we improve those clusters by applying Fuzzy C-Means (FCM), K-Means and Vector Space Model (VSM) techniques separately. For experimental purpose, we use Classic3 and Classic4 datasets of Cornell University having more than 10,000 documents and run both traditional apriori and our modified apriori approach on it. Experimental results show that our approach outperforms the traditional apriori algorithm in terms of database scan and improvement on association of analysis. We found out that FCM is better than K-Means and VSM in terms of F-measure of clusters of different sizes.

Citations (23)

Summary

We haven't generated a summary for this paper yet.