Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

CoMEt: A Statistical Approach to Identify Combinations of Mutually Exclusive Alterations in Cancer (1503.08224v1)

Published 27 Mar 2015 in q-bio.QM and stat.CO

Abstract: Cancer is a heterogeneous disease with different combinations of genetic and epigenetic alterations driving the development of cancer in different individuals. While these alterations are believed to converge on genes in key cellular signaling and regulatory pathways, our knowledge of these pathways remains incomplete, making it difficult to identify driver alterations by their recurrence across genes or known pathways. We introduce Combinations of Mutually Exclusive Alterations (CoMEt), an algorithm to identify combinations of alterations de novo, without any prior biological knowledge (e.g. pathways or protein interactions). CoMEt searches for combinations of mutations that exhibit mutual exclusivity, a pattern expected for mutations in pathways. CoMEt has several important feature that distinguish it from existing approaches to analyze mutual exclusivity among alterations. These include: an exact statistical test for mutual exclusivity that is more sensitive in detecting combinations containing rare alterations; simultaneous identification of collections of one or more combinations of mutually exclusive alterations; simultaneous analysis of subtype-specific mutations; and summarization over an ensemble of collections of mutually exclusive alterations. These features enable CoMEt to robustly identify alterations affecting multiple pathways, or hallmarks of cancer. We show that CoMEt outperforms existing approaches on simulated and real data. Application of CoMEt to hundreds of samples from four different cancer types from TCGA reveals multiple mutually exclusive sets within each cancer type. Many of these overlap known pathways, but others reveal novel putative cancer genes. *Equal contribution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.