Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sparse inversion of Stokes profiles. I. Two-dimensional Milne-Eddington inversions (1503.07666v1)

Published 26 Mar 2015 in astro-ph.SR

Abstract: Inversion codes are numerical tools used for the inference of physical properties from the observations. Despite their success, the quality of current spectropolarimetric observations and those expected in the near future presents a challenge to current inversion codes. The pixel-by-pixel strategy of inverting spectropolarimetric data that we currently utilize needs to be surpassed and improved. The inverted physical parameters have to take into account the spatial correlation that is present in the data and that contains valuable physical information. We utilize the concept of sparsity or compressibility to develop an new generation of inversion codes for the Stokes parameters. The inversion code uses numerical optimization techniques based on the idea of proximal algorithms to impose sparsity. In so doing, we allow for the first time to exploit the presence of spatial correlation on the maps of physical parameters. Sparsity also regularizes the solution by reducing the number of unknowns. We compare the results of the new inversion code with pixel-by-pixel inversions, demonstrating the increase in robustness of the solution. We also show how the method can easily compensate for the effect of the telescope point spread function, producing solutions with an enhanced contrast.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube