Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Role of Matrix Factorization Model in Collaborative Filtering Algorithm: A Survey (1503.07475v1)

Published 25 Mar 2015 in cs.IR

Abstract: Recommendation Systems apply Information Retrieval techniques to select the online information relevant to a given user. Collaborative Filtering is currently most widely used approach to build Recommendation System. CF techniques uses the user behavior in form of user item ratings as their information source for prediction. There are major challenges like sparsity of rating matrix and growing nature of data which is faced by CF algorithms. These challenges are been well taken care by Matrix Factorization. In this paper we attempt to present an overview on the role of different MF model to address the challenges of CF algorithms, which can be served as a roadmap for research in this area.

Citations (58)

Summary

We haven't generated a summary for this paper yet.