Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Imbalanced Classification of Healthcare Data with Missing Values (1503.06250v1)

Published 21 Mar 2015 in stat.ML and cs.LG

Abstract: In medical domain, data features often contain missing values. This can create serious bias in the predictive modeling. Typical standard data mining methods often produce poor performance measures. In this paper, we propose a new method to simultaneously classify large datasets and reduce the effects of missing values. The proposed method is based on a multilevel framework of the cost-sensitive SVM and the expected maximization imputation method for missing values, which relies on iterated regression analyses. We compare classification results of multilevel SVM-based algorithms on public benchmark datasets with imbalanced classes and missing values as well as real data in health applications, and show that our multilevel SVM-based method produces fast, and more accurate and robust classification results.

Citations (23)

Summary

We haven't generated a summary for this paper yet.