Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Entanglement entropy converges to classical entropy around periodic orbits (1503.04857v2)

Published 16 Mar 2015 in hep-th and quant-ph

Abstract: We consider oscillators evolving subject to a periodic driving force that dynamically entangles them, and argue that this gives the linearized evolution around periodic orbits in a general chaotic Hamiltonian dynamical system. We show that the entanglement entropy, after tracing over half of the oscillators, generically asymptotes to linear growth at a rate given by the sum of the positive Lyapunov exponents of the system. These exponents give a classical entropy growth rate, in the sense of Kolmogorov, Sinai and Pesin. We also calculate the dependence of this entropy on linear mixtures of the oscillator Hilbert space factors, to investigate the dependence of the entanglement entropy on the choice of coarse-graining. We find that for almost all choices the asymptotic growth rate is the same.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.