Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Encoding Source Language with Convolutional Neural Network for Machine Translation (1503.01838v5)

Published 6 Mar 2015 in cs.CL, cs.LG, and cs.NE

Abstract: The recently proposed neural network joint model (NNJM) (Devlin et al., 2014) augments the n-gram target LLM with a heuristically chosen source context window, achieving state-of-the-art performance in SMT. In this paper, we give a more systematic treatment by summarizing the relevant source information through a convolutional architecture guided by the target information. With different guiding signals during decoding, our specifically designed convolution+gating architectures can pinpoint the parts of a source sentence that are relevant to predicting a target word, and fuse them with the context of entire source sentence to form a unified representation. This representation, together with target language words, are fed to a deep neural network (DNN) to form a stronger NNJM. Experiments on two NIST Chinese-English translation tasks show that the proposed model can achieve significant improvements over the previous NNJM by up to +1.08 BLEU points on average

Citations (105)

Summary

We haven't generated a summary for this paper yet.