Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Suppressing traffic-driven epidemic spreading by edge-removal strategies (1503.00149v1)

Published 28 Feb 2015 in physics.soc-ph and cs.SI

Abstract: The interplay between traffic dynamics and epidemic spreading on complex networks has received increasing attention in recent years. However, the control of traffic-driven epidemic spreading remains to be a challenging problem. In this Brief Report, we propose a method to suppress traffic-driven epidemic outbreak by properly removing some edges in a network. We find that the epidemic threshold can be enhanced by the targeted cutting of links among large-degree nodes or edges with the largest algorithmic betweeness. In contrast, the epidemic threshold will be reduced by the random edge removal. These findings are robust with respect to traffic-flow conditions, network structures and routing strategies. Moreover, we find that the shutdown of targeted edges can effectively release traffic load passing through large-degree nodes, rendering a relatively low probability of infection to these nodes.

Citations (26)

Summary

We haven't generated a summary for this paper yet.