Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Convex Feasibility Approach to Anytime Model Predictive Control (1502.07974v1)

Published 27 Feb 2015 in cs.SY

Abstract: This paper proposes to decouple performance optimization and enforcement of asymptotic convergence in Model Predictive Control (MPC) so that convergence to a given terminal set is achieved independently of how much performance is optimized at each sampling step. By embedding an explicit decreasing condition in the MPC constraints and thanks to a novel and very easy-to-implement convex feasibility solver proposed in the paper, it is possible to run an outer performance optimization algorithm on top of the feasibility solver and optimize for an amount of time that depends on the available CPU resources within the current sampling step (possibly going open-loop at a given sampling step in the extreme case no resources are available) and still guarantee convergence to the terminal set. While the MPC setup and the solver proposed in the paper can deal with quite general classes of functions, we highlight the synthesis method and show numerical results in case of linear MPC and ellipsoidal and polyhedral terminal sets.

Citations (18)

Summary

We haven't generated a summary for this paper yet.