A new upper bound for the clique cover number with applications
Abstract: Let $\alpha(G)$ and $\beta(G)$, denote the size of a largest independent set and the clique cover number of an undirected graph $G$. Let $H$ be an interval graph with $V(G)=V(H)$ and $E(G)\subseteq E(H)$, and let $\phi(G,H)$ denote the maximum of ${\beta(G[W])\over \alpha(G[W])}$ overall induced subgraphs $G[W]$ of $G$ that are cliques in $H$. The main result of this paper is to prove that for any graph $G$ $${\beta(G)}\le 2 \alpha(H)\phi(G,H)(\log \alpha(H)+1),$$ where, $\alpha(H)$ is the size of a largest independent set in $H$. We further provide a generalization that significantly unifies or improves some past algorithmic and structural results concerning the clique cover number for some well known intersection graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.