Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

ICR: Iterative Convex Refinement for Sparse Signal Recovery Using Spike and Slab Priors (1502.04726v1)

Published 16 Feb 2015 in stat.ML, cs.CV, and math.OC

Abstract: In this letter, we address sparse signal recovery using spike and slab priors. In particular, we focus on a Bayesian framework where sparsity is enforced on reconstruction coefficients via probabilistic priors. The optimization resulting from spike and slab prior maximization is known to be a hard non-convex problem, and existing solutions involve simplifying assumptions and/or relaxations. We propose an approach called Iterative Convex Refinement (ICR) that aims to solve the aforementioned optimization problem directly allowing for greater generality in the sparse structure. Essentially, ICR solves a sequence of convex optimization problems such that sequence of solutions converges to a sub-optimal solution of the original hard optimization problem. We propose two versions of our algorithm: a.) an unconstrained version, and b.) with a non-negativity constraint on sparse coefficients, which may be required in some real-world problems. Experimental validation is performed on both synthetic data and for a real-world image recovery problem, which illustrates merits of ICR over state of the art alternatives.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.