Papers
Topics
Authors
Recent
2000 character limit reached

Combinatorial Bandits Revisited (1502.03475v3)

Published 11 Feb 2015 in cs.LG, math.OC, and stat.ML

Abstract: This paper investigates stochastic and adversarial combinatorial multi-armed bandit problems. In the stochastic setting under semi-bandit feedback, we derive a problem-specific regret lower bound, and discuss its scaling with the dimension of the decision space. We propose ESCB, an algorithm that efficiently exploits the structure of the problem and provide a finite-time analysis of its regret. ESCB has better performance guarantees than existing algorithms, and significantly outperforms these algorithms in practice. In the adversarial setting under bandit feedback, we propose \textsc{CombEXP}, an algorithm with the same regret scaling as state-of-the-art algorithms, but with lower computational complexity for some combinatorial problems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.