Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combinatorial Bandits for Maximum Value Reward Function under Max Value-Index Feedback (2305.16074v1)

Published 25 May 2023 in cs.LG, math.ST, and stat.TH

Abstract: We consider a combinatorial multi-armed bandit problem for maximum value reward function under maximum value and index feedback. This is a new feedback structure that lies in between commonly studied semi-bandit and full-bandit feedback structures. We propose an algorithm and provide a regret bound for problem instances with stochastic arm outcomes according to arbitrary distributions with finite supports. The regret analysis rests on considering an extended set of arms, associated with values and probabilities of arm outcomes, and applying a smoothness condition. Our algorithm achieves a $O((k/\Delta)\log(T))$ distribution-dependent and a $\tilde{O}(\sqrt{T})$ distribution-independent regret where $k$ is the number of arms selected in each round, $\Delta$ is a distribution-dependent reward gap and $T$ is the horizon time. Perhaps surprisingly, the regret bound is comparable to previously-known bound under more informative semi-bandit feedback. We demonstrate the effectiveness of our algorithm through experimental results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.