Papers
Topics
Authors
Recent
Search
2000 character limit reached

On categories O for quantized symplectic resolutions

Published 2 Feb 2015 in math.RT | (1502.00595v2)

Abstract: In this paper we study categories O over quantizations of symplectic resolutions admitting Hamiltonian tori actions with finitely many fixed points. In this generality, these categories were introduced by Braden, Licata, Proudfoot and Webster. We establish a family of standardly stratified structures (in the sense of the author and Webster) on these categories O. We use these structures to study shuffling functors of Braden, Licata, Proudfoot and Webster (called cross-walling functors in this paper). Most importantly, we prove that all cross-walling functors are derived equivalences that define an action of the Deligne groupoid of a suitable real hyperplane arrangement.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.