Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unsupervised image segmentation by Global and local Criteria Optimization Based on Bayesian Networks (1501.05617v1)

Published 22 Jan 2015 in cs.CV

Abstract: Today Bayesian networks are more used in many areas of decision support and image processing. In this way, our proposed approach uses Bayesian Network to modelize the segmented image quality. This quality is calculated on a set of attributes that represent local evaluation measures. The idea is to have these local levels chosen in a way to be intersected into them to keep the overall appearance of segmentation. The approach operates in two phases: the first phase is to make an over-segmentation which gives superpixels card. In the second phase, we model the superpixels by a Bayesian Network. To find the segmented image with the best overall quality we used two approximate inference methods, the first using ICM algorithm which is widely used in Markov Models and a second is a recursive method called algorithm of model decomposition based on max-product algorithm which is very popular in the recent works of image segmentation. For our model, we have shown that the composition of these two algorithms leads to good segmentation performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube