Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm (1602.03048v1)

Published 9 Feb 2016 in stat.ML

Abstract: Unsupervised image segmentation aims at clustering the set of pixels of an image into spatially homogeneous regions. We introduce here a class of Bayesian nonparametric models to address this problem. These models are based on a combination of a Potts-like spatial smoothness component and a prior on partitions which is used to control both the number and size of clusters. This class of models is flexible enough to include the standard Potts model and the more recent Potts-Dirichlet Process model \cite{Orbanz2008}. More importantly, any prior on partitions can be introduced to control the global clustering structure so that it is possible to penalize small or large clusters if necessary. Bayesian computation is carried out using an original generalized Swendsen-Wang algorithm. Experiments demonstrate that our method is competitive in terms of RAND\ index compared to popular image segmentation methods, such as mean-shift, and recent alternative Bayesian nonparametric models.

Citations (9)

Summary

We haven't generated a summary for this paper yet.