Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Students Behavioural Analysis in an Online Learning Environment Using Data Mining (ICIAfS) (1412.7813v1)

Published 25 Dec 2014 in cs.CY

Abstract: The focus of this research was to use Educational Data Mining (EDM) techniques to conduct a quantitative analysis of students interaction with an e-learning system through instructor-led non-graded and graded courses. This exercise is useful for establishing a guideline for a series of online short courses for them. A group of 412 students' access behaviour in an e-learning system were analysed and they were grouped into clusters using K-Means clustering method according to their course access log records. The results explained that more than 40% from the student group are passive online learners in both graded and non-graded learning environments. The result showed that the difference in the learning environments could change the online access behaviour of a student group. Clustering divided the student population into five access groups based on their course access behaviour. Among these groups, the least access group (NG-41% and G-42%) and the highest access group (NG-9% and G-5%) could be identified very clearly due to their access variation from the rest of the groups.

Citations (23)

Summary

We haven't generated a summary for this paper yet.