Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metric spaces admitting low-distortion embeddings into all $n$-dimensional Banach spaces (1412.7670v2)

Published 24 Dec 2014 in math.FA and math.MG

Abstract: For a fixed $K\gg 1$ and $n\in\mathbb{N}$, $n\gg 1$, we study metric spaces which admit embeddings with distortion $\le K$ into each $n$-dimensional Banach space. Classical examples include spaces embeddable into $\log n$-dimensional Euclidean spaces, and equilateral spaces. We prove that good embeddability properties are preserved under the operation of metric composition of metric spaces. In particular, we prove that any $n$-point ultrametric can be embedded with uniformly bounded distortion into any Banach space of dimension $\log n$. The main result of the paper is a new example of a family of finite metric spaces which are not metric compositions of classical examples and which do embed with uniformly bounded distortion into any Banach space of dimension $n$. This partially answers a question of G. Schechtman.

Summary

We haven't generated a summary for this paper yet.