2000 character limit reached
On 2-powerfully Perfect Numbers in Three Quadratic Rings (1412.3072v2)
Published 9 Dec 2014 in math.NT
Abstract: Using an extension of the abundancy index to imaginary quadratic rings with unique factorization, we define what we call $n$-powerfully perfect numbers in these rings. This definition serves to extend the concept of perfect numbers that have been defined and studied in the integers. We investigate the properties of $2$-powerfully perfect numbers in the rings $\mathcal O_{\mathbb{Q}(\sqrt{-1})}$, $\mathcal O_{\mathbb{Q}(\sqrt{-2})}$, and $\mathcal O_{\mathbb{Q}(\sqrt{-7})}$, the three imaginary quadratic rings with unique factorization in which $2$ is not a prime.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.