Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Note on Finite Number Rings (2312.01019v1)

Published 2 Dec 2023 in math.RA

Abstract: We define the finite number ring ${\Bbb Z}_n [\sqrt [m] r]$ where $m,n$ are positive integers and $r$ in an integer akin to the definition of the Gaussian integer ${\Bbb Z}[i]$. This idea is also introduced briefly in [7]. By definition, this finite number ring ${\Bbb Z}_n [\sqrt [m] r]$ is naturally isomorphic to the ring ${\Bbb Z}_n[x]/{\langle xm-r \rangle}$. From an educational standpoint, this description offers a straightforward and elementary presentation of this finite ring, making it suitable for readers who do not have extensive exposure to abstract algebra. We discuss various arithmetical properties of this ring. In particular, when $n=p$ is a prime number and $\mathbb{Z}_p$ contains a primitive $m$-root of unity, we describe the structure of $\mathbb{Z}_n[\sqrt[m]{r}]$ explicitly.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.