2000 character limit reached
Strong edge-coloring of $(3, Δ)$-bipartite graphs (1412.2624v2)
Published 8 Dec 2014 in cs.DM and math.CO
Abstract: A strong edge-coloring of a graph $G$ is an assignment of colors to edges such that every color class induces a matching. We here focus on bipartite graphs whose one part is of maximum degree at most $3$ and the other part is of maximum degree $\Delta$. For every such graph, we prove that a strong $4\Delta$-edge-coloring can always be obtained. Together with a result of Steger and Yu, this result confirms a conjecture of Faudree, Gy\'arf\'as, Schelp and Tuza for this class of graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.