A note on the simultaneous edge coloring
Abstract: Let $G=(V,E)$ be a graph. A (proper) $k$-edge-coloring is a coloring of the edges of $G$ such that any pair of edges sharing an endpoint receive distinct colors. A classical result of Vizing ensures that any simple graph $G$ admits a $(\Delta(G)+1)$-edge coloring where $\Delta(G)$ denotes the maximum degreee of $G$. Recently, Cabello raised the following question: given two graphs $G_1,G_2$ of maximum degree $\Delta$ on the same set of vertices $V$, is it possible to edge-color their (edge) union with $\Delta+2$ colors in such a way the restriction of $G$ to respectively the edges of $G_1$ and the edges of $G_2$ are edge-colorings? More generally, given $\ell$ graphs, how many colors do we need to color their union in such a way the restriction of the coloring to each graph is proper? In this short note, we prove that we can always color the union of the graphs $G_1,\ldots,G_\ell$ of maximum degree $\Delta$ with $\Omega(\sqrt{\ell} \cdot \Delta)$ colors and that there exist graphs for which this bound is tight up to a constant multiplicative factor. Moreover, for two graphs, we prove that at most $\frac 32 \Delta +4$ colors are enough which is, as far as we know, the best known upper bound.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.