Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative results on the corrector equation in stochastic homogenization (1409.0801v1)

Published 2 Sep 2014 in math.AP

Abstract: We derive optimal estimates in stochastic homogenization of linear elliptic equations in divergence form in dimensions $d\ge 2$. In previous works we studied the model problem of a discrete elliptic equation on $\mathbb{Z}d$. Under the assumption that a spectral gap estimate holds in probability, we proved that there exists a stationary corrector field in dimensions $d>2$ and that the energy density of that corrector behaves as if it had finite range of correlation in terms of the variance of spatial averages - the latter decays at the rate of the central limit theorem. In this article we extend these results, and several other estimates, to the case of a continuum linear elliptic equation whose (not necessarily symmetric) coefficient field satisfies a continuum version of the spectral gap estimate. In particular, our results cover the example of Poisson random inclusions.

Summary

We haven't generated a summary for this paper yet.