Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Retrieval And Classification Using Local Feature Vectors (1409.0749v1)

Published 2 Sep 2014 in cs.IR, cs.CV, and cs.MM

Abstract: Content Based Image Retrieval(CBIR) is one of the important subfield in the field of Information Retrieval. The goal of a CBIR algorithm is to retrieve semantically similar images in response to a query image submitted by the end user. CBIR is a hard problem because of the phenomenon known as $\textit {semantic gap}$. In this thesis, we aim at analyzing the performance of a CBIR system build using local feature vectors and Intermediate Matching Kernel. We also propose a Two-Step Matching process for reducing the response time of the CBIR systems. Further, we develop a Meta-Learning framework for improving the retrieval performance of these systems. Our results show that the Two-Step Matching process significantly reduces response time and the Meta-Learning Framework improves the retrieval performance by more than two fold. We also analyze the performance of various image classification systems that use different image representations constructed from the local feature vectors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Vikas Verma (20 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.