Papers
Topics
Authors
Recent
Search
2000 character limit reached

Liouville theorems for semilinear differential inequalities on sub-Riemannian manifolds

Published 29 May 2021 in math.DG and math.AP | (2105.14386v1)

Abstract: In this paper, we generalize Liouville type theorems for some semilinear partial differential inequalities to sub-Riemannian manifolds satisfying a nonnegative generalized curvature-dimension inequality introduced by Baudoin and Garofalo in [5]. In particular, our results apply to all Sasakian manifolds with nonnegative horizontal Webster-Tanaka-Ricci curvature. The key ingredient is to construct a class of "good" cut-off functions. We also provide some upper bounds for lifespan to parabolic and hyperbolic inequalities.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.