Cartan-Eilenberg complexes and Auslander categories (1408.6728v2)
Abstract: Let $R$ be a commutative noetherian ring with a semi-dualizing module $C$. The Auslander categories with respect to $C$ are related through Foxby equivalence: $\xymatrix@C=50pt{\mathcal {A}C(R) \ar@<0.4ex>[r]{C\otimes{\mathbf{L}}{R} -} & \mathcal {B}C(R) \ar@<0.4ex>[l]{\mathbf{R}\mathrm{Hom}{R}(C, -)}}$. We firstly intend to extend the Foxby equivalence to Cartan-Eilenberg complexes. To this end, C-E Auslander categories, C-E $\mathcal{W}$ complexes and C-E $\mathcal{W}$-Gorenstein complexes are introduced, where $\mathcal{W}$ denotes a self-orthogonal class of $R$-modules. Moreover, criteria for finiteness of C-E Gorenstein dimensions of complexes in terms of resolution-free characterizations are considered.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.