Modelling across extremal dependence classes (1408.5060v4)
Abstract: Different dependence scenarios can arise in multivariate extremes, entailing careful selection of an appropriate class of models. In bivariate extremes, the variables are either asymptotically dependent or are asymptotically independent. Most available statistical models suit one or other of these cases, but not both, resulting in a stage in the inference that is unaccounted for, but can substantially impact subsequent extrapolation. Existing modelling solutions to this problem are either applicable only on sub-domains, or appeal to multiple limit theories. We introduce a unified representation for bivariate extremes that encompasses a wide variety of dependence scenarios, and applies when at least one variable is large. Our representation motivates a parametric model that encompasses both dependence classes. We implement a simple version of this model, and show that it performs well in a range of settings.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.