Neural Bayes inference for complex bivariate extremal dependence models (2503.23156v1)
Abstract: Likelihood-free approaches are appealing for performing inference on complex dependence models, either because it is not possible to formulate a likelihood function, or its evaluation is very computationally costly. This is the case for several models available in the multivariate extremes literature, particularly for the most flexible tail models, including those that interpolate between the two key dependence classes of asymptotic dependence' andasymptotic independence'. We focus on approaches that leverage neural networks to approximate Bayes estimators. In particular, we explore the properties of neural Bayes estimators for parameter inference for several flexible but computationally expensive models to fit, with a view to aiding their routine implementation. Owing to the absence of likelihood evaluation in the inference procedure, classical information criteria such as the Bayesian information criterion cannot be used to select the most appropriate model. Instead, we propose using neural networks as neural Bayes classifiers for model selection. Our goal is to provide a toolbox for simple, fast fitting and comparison of complex extreme-value dependence models, where the best model is selected for a given data set and its parameters subsequently estimated using neural Bayes estimation. We apply our classifiers and estimators to analyse the pairwise extremal behaviour of changes in horizontal geomagnetic field fluctuations at three different locations.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.