Papers
Topics
Authors
Recent
2000 character limit reached

Schubert varieties and distances between subspaces of different dimensions (1407.0900v3)

Published 3 Jul 2014 in math.NA and math.AG

Abstract: We resolve a basic problem on subspace distances that often arises in applications: How can the usual Grassmann distance between equidimensional subspaces be extended to subspaces of different dimensions? We show that a natural solution is given by the distance of a point to a Schubert variety within the Grassmannian. This distance reduces to the Grassmann distance when the subspaces are equidimensional and does not depend on any embedding into a larger ambient space. Furthermore, it has a concrete expression involving principal angles, and is efficiently computable in numerically stable ways. Our results are largely independent of the Grassmann distance --- if desired, it may be substituted by any other common distances between subspaces. Our approach depends on a concrete algebraic geometric view of the Grassmannian that parallels the differential geometric perspective that is well-established in applied and computational mathematics.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.