Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Many Dissimilarity/Kernel Self Organizing Map Variants Do We Need? (1407.0611v1)

Published 2 Jul 2014 in stat.ML, cs.LG, and cs.NE

Abstract: In numerous applicative contexts, data are too rich and too complex to be represented by numerical vectors. A general approach to extend machine learning and data mining techniques to such data is to really on a dissimilarity or on a kernel that measures how different or similar two objects are. This approach has been used to define several variants of the Self Organizing Map (SOM). This paper reviews those variants in using a common set of notations in order to outline differences and similarities between them. It discusses the advantages and drawbacks of the variants, as well as the actual relevance of the dissimilarity/kernel SOM for practical applications.

Citations (19)

Summary

We haven't generated a summary for this paper yet.