Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Concise Information-Theoretic Derivation of the Baum-Welch algorithm (1406.7002v1)

Published 24 Jun 2014 in cs.IT, cs.LG, and math.IT

Abstract: We derive the Baum-Welch algorithm for hidden Markov models (HMMs) through an information-theoretical approach using cross-entropy instead of the Lagrange multiplier approach which is universal in machine learning literature. The proposed approach provides a more concise derivation of the Baum-Welch method and naturally generalizes to multiple observations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.