Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic dynamics of active swimmers in linear flows (1406.4264v1)

Published 17 Jun 2014 in physics.flu-dyn, cond-mat.soft, and physics.bio-ph

Abstract: Most classical work on the hydrodynamics of low-Reynolds-number swimming addresses deterministic locomotion in quiescent environments. Thermal fluctuations in fluids are known to lead to a Brownian loss of the swimming direction. As most cells or synthetic swimmers are immersed in external flows, we consider theoretically in this paper the stochastic dynamics of a model active particle (a self-propelled sphere) in a steady general linear flow. The stochasticity arises both from translational diffusion in physical space, and from a combination of rotary diffusion and run-and-tumble dynamics in orientation space. We begin by deriving a general formulation for all components of the long-time mean square displacement tensor for a swimmer with a time-dependent swimming velocity and whose orientation decorrelates due to rotary diffusion alone. This general framework is applied to obtain the convectively enhanced mean-squared displacements of a steadily-swimming particle in three canonical linear flows (extension, simple shear, and solid-body rotation). We then show how to extend our results to the case where the swimmer orientation also decorrelates on account of run-and-tumble dynamics. Self-propulsion in general leads to the same long-time temporal scalings as for passive particles in linear flows but with increased coefficients. In the particular case of solid-body rotation, the effective long-time diffusion is the same as that in a quiescent fluid, and we clarify the lack of flow-dependence by briefly examining the dynamics in elliptic linear flows. By comparing the new active terms with those obtained for passive particles we see that swimming can lead to an enhancement of the mean-square displacements by orders of magnitude, and could be relevant for biological organisms or synthetic swimming devices in fluctuating environmental or biological flows.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube