Existence and uniqueness of maximal regular flows for non-smooth vector fields (1406.3701v1)
Abstract: In this paper we provide a complete analogy between the Cauchy-Lipschitz and the DiPerna-Lions theories for ODE's, by developing a local version of the DiPerna-Lions theory. More precisely, we prove existence and uniqueness of a maximal regular flow for the DiPerna-Lions theory using only local regularity and summability assumptions on the vector field, in analogy with the classical theory, which uses only local regularity assumptions. We also study the behaviour of the ODE trajectories before the maximal existence time. Unlike the Cauchy-Lipschitz theory, this behaviour crucially depends on the nature of the bounds imposed on the spatial divergence of the vector field. In particular, a global assumption on the divergence is needed to obtain a proper blow-up of the trajectories.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.