Papers
Topics
Authors
Recent
2000 character limit reached

Variable selection in high-dimensional additive models based on norms of projections (1406.0052v2)

Published 31 May 2014 in math.ST and stat.TH

Abstract: We consider the problem of variable selection in high-dimensional sparse additive models. We focus on the case that the components belong to nonparametric classes of functions. The proposed method is motivated by geometric considerations in Hilbert spaces and consists of comparing the norms of the projections of the data onto various additive subspaces. Under minimal geometric assumptions, we prove concentration inequalities which lead to new conditions under which consistent variable selection is possible. As an application, we establish conditions under which a single component can be estimated with the rate of convergence corresponding to the situation in which the other components are known.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.