A Non-Commuting Stabilizer Formalism (1404.5327v1)
Abstract: We propose a non-commutative extension of the Pauli stabilizer formalism. The aim is to describe a class of many-body quantum states which is richer than the standard Pauli stabilizer states. In our framework, stabilizer operators are tensor products of single-qubit operators drawn from the group $\langle \alpha I, X,S\rangle$, where $\alpha=e{i\pi/4}$ and $S=\operatorname{diag}(1,i)$. We provide techniques to efficiently compute various properties related to bipartite entanglement, expectation values of local observables, preparation by means of quantum circuits, parent Hamiltonians etc. We also highlight significant differences compared to the Pauli stabilizer formalism. In particular, we give examples of states in our formalism which cannot arise in the Pauli stabilizer formalism, such as topological models that support non-Abelian anyons.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.