Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The qudit Pauli group: non-commuting pairs, non-commuting sets, and structure theorems (2302.07966v2)

Published 15 Feb 2023 in quant-ph, math-ph, math.AC, and math.MP

Abstract: Qudits with local dimension $d>2$ can have unique structure and uses that qubits ($d=2$) cannot. Qudit Pauli operators provide a very useful basis of the space of qudit states and operators. We study the structure of the qudit Pauli group for any, including composite, $d$ in several ways. To cover composite values of $d$, we work with modules over commutative rings, which generalize the notion of vector spaces over fields. For any specified set of commutation relations, we construct a set of qudit Paulis satisfying those relations. We also study the maximum size of sets of Paulis that mutually non-commute and sets that non-commute in pairs. Finally, we give methods to find near minimal generating sets of Pauli subgroups, calculate the sizes of Pauli subgroups, and find bases of logical operators for qudit stabilizer codes. Useful tools in this study are normal forms from linear algebra over commutative rings, including the Smith normal form, alternating Smith normal form, and Howell normal form of matrices. Possible applications of this work include the construction and analysis of qudit stabilizer codes, entanglement assisted codes, parafermion codes, and fermionic Hamiltonian simulation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. “Maximizing the Hilbert space for a finite number of distinguishable quantum states”. Phys. Rev. Lett. 92, 097901 (2004). doi: 10.1103/PhysRevLett.92.097901.
  2. “On optimal quantum codes”. International Journal of Quantum Information 02, 55–64 (2004). doi: 10.1142/S0219749904000079.
  3. “Thirty-six entangled officers of Euler: Quantum solution to a classically impossible problem”. Phys. Rev. Lett. 128, 080507 (2022). doi: 10.1103/PhysRevLett.128.080507.
  4. “Universal simulation of Hamiltonian dynamics for quantum systems with finite-dimensional state spaces”. Phys. Rev. A 66, 022317 (2002). doi: 10.1103/PhysRevA.66.022317.
  5. Jonathan E. Moussa. “Quantum circuits for qubit fusion”. Quantum Information & Computation 16, 1113–1124 (2016). doi: 10.26421/QIC16.13-14-3.
  6. “Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures”. Phys. Rev. A 96, 012306 (2017). doi: 10.1103/PhysRevA.96.012306.
  7. “Magic-state distillation in all prime dimensions using quantum Reed-Muller codes”. Phys. Rev. X 2, 041021 (2012). doi: 10.1103/PhysRevX.2.041021.
  8. “Towards low overhead magic state distillation”. Phys. Rev. Lett. 123, 070507 (2019). doi: 10.1103/PhysRevLett.123.070507.
  9. “Pauli stabilizer models of twisted quantum doubles”. PRX Quantum 3, 010353 (2022). doi: 10.1103/PRXQuantum.3.010353.
  10. “Pauli topological subsystem codes from Abelian anyon theories”. Quantum 7, 1137 (2023). doi: 10.22331/q-2023-10-12-1137.
  11. “High-fidelity qutrit entangling gates for superconducting circuits”. Nature Communications 13, 7481 (2022). doi: 10.1038/s41467-022-34851-z.
  12. “Experimental realization of two qutrits gate with tunable coupling in superconducting circuits”. Phys. Rev. Lett. 130, 030603 (2023). doi: 10.1103/PhysRevLett.130.030603.
  13. “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand”. New Journal of Physics 15, 053007 (2013). doi: 10.1088/1367-2630/15/5/053007.
  14. “On-chip generation of high-dimensional entangled quantum states and their coherent control”. Nature 546, 622–626 (2017). doi: 10.1038/nature22986.
  15. “Universal qudit gate synthesis for transmons”. PRX Quantum 4, 030327 (2023). doi: 10.1103/PRXQuantum.4.030327.
  16. “Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme”. Quantum Science and Technology 3, 025006 (2018). doi: 10.1088/2058-9565/aaace4.
  17. “Molecular spin qudits for quantum algorithms”. Chem. Soc. Rev. 47, 501–513 (2018). doi: 10.1039/C5CS00933B.
  18. “Quantum error correction with molecular spin qudits”. Phys. Chem. Chem. Phys. 24, 20030–20039 (2022). doi: 10.1039/D2CP01228F.
  19. Daniel Gottesman. “Stabilizer codes and quantum error correction”. PhD thesis. California Institute of Technology.  (1997). doi: 10.7907/rzr7-dt72.
  20. Daniel Gottesman. “Fault-tolerant quantum computation with higher-dimensional systems”. In C.P. Williams, editor, Quantum Computing and Quantum Communications, QCQC 1998. Volume 1509, pages 302–313. Springer Berlin Heidelberg (1999). doi: 10.1007/3-540-49208-9_27.
  21. “Parafermion stabilizer codes”. Phys. Rev. A 90, 042326 (2014). doi: 10.1103/PhysRevA.90.042326.
  22. “A graph-based formalism for surface codes and twists” (2021). doi: 10.48550/arXiv.2101.09349.
  23. Lane G. Gunderman. “Transforming collections of Pauli operators into equivalent collections of Pauli operators over minimal registers”. Phys. Rev. A 107, 062416 (2023). doi: 10.1103/PhysRevA.107.062416.
  24. Greg Kuperberg. “Kasteleyn cokernels.”. The Electronic Journal of Combinatorics [electronic only] 9, R29, 30p. (2002). doi: 10.37236/1645.
  25. Mark M. Wilde. “Logical operators of quantum codes”. Phys. Rev. A 79, 062322 (2009). doi: 10.1103/PhysRevA.79.062322.
  26. “Über das Paulische Äquivalenzverbot”. Zeitschrift für Physik 47, 631–651 (1928). doi: 10.1007/BF01331938.
  27. “Fermionic quantum computation”. Annals of Physics 298, 210–226 (2002). doi: 10.1006/aphy.2002.6254.
  28. F Verstraete and J. Ignacio Cirac. “Mapping local Hamiltonians of fermions to local Hamiltonians of spins”. Journal of Statistical Mechanics: Theory and Experiment 2005, P09012 (2005). doi: 10.1088/1742-5468/2005/09/P09012.
  29. “Operator locality in the quantum simulation of fermionic models”. Phys. Rev. A 95, 032332 (2017). doi: 10.1103/PhysRevA.95.032332.
  30. “Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning”. Quantum 4, 276 (2020). doi: 10.22331/q-2020-06-04-276.
  31. “Tapering off qubits to simulate fermionic Hamiltonians” (2017). doi: 10.48550/arXiv.1701.08213.
  32. “Superfast encodings for fermionic quantum simulation”. Phys. Rev. Res. 1, 033033 (2019). doi: 10.1103/PhysRevResearch.1.033033.
  33. “Reducing qubit requirements for quantum simulations using molecular point group symmetries”. Journal of Chemical Theory and Computation 16, 6091–6097 (2020). doi: 10.1021/acs.jctc.0c00113.
  34. “The Bravyi-Kitaev transformation for quantum computation of electronic structure”. The Journal of Chemical Physics 137, 224109 (2012). doi: 10.1063/1.4768229.
  35. “Fermion-to-qubit mappings with varying resource requirements for quantum simulation”. New Journal of Physics 20, 063010 (2018). doi: 10.1088/1367-2630/aac54f.
  36. “Correcting quantum errors with entanglement”. Science 314, 436–439 (2006). doi: 10.1126/science.1131563.
  37. Min-Hsiu Hsieh. “Entanglement-assisted coding theory”. PhD thesis. University of Southern California.  (2008). url: https://www.proquest.com/dissertations-theses/entanglement-assisted-coding-theory/docview/304492442/se-2.
  38. “Optimal entanglement formulas for entanglement-assisted quantum coding”. Phys. Rev. A 77, 064302 (2008). doi: 10.1103/PhysRevA.77.064302.
  39. “Minimal-memory, noncatastrophic, polynomial-depth quantum convolutional encoders”. IEEE Transactions on Information Theory 59, 1198–1210 (2013). doi: 10.1109/TIT.2012.2220520.
  40. A Yu Kitaev. “Unpaired Majorana fermions in quantum wires”. Physics-Uspekhi 44, 131 (2001). doi: 10.1070/1063-7869/44/10S/S29.
  41. “Quantum error correction for complex and Majorana fermion qubits” (2017). doi: 10.48550/arXiv.1703.00459.
  42. Vlad Gheorghiu. “Standard form of qudit stabilizer groups”. Physics Letters A 378, 505–509 (2014). doi: 10.1016/j.physleta.2013.12.009.
  43. “Improved simulation of stabilizer circuits”. Phys. Rev. A 70, 052328 (2004). doi: 10.1103/PhysRevA.70.052328.
  44. Lane G. Gunderman. “Stabilizer codes with exotic local-dimensions”. Quantum 8, 1249 (2024). doi: 10.22331/q-2024-02-12-1249.
  45. Zihan Lei. “Qudit surface codes and hypermap codes”. Quantum Information Processing 22, 297 (2023). doi: 10.1007/s11128-023-04060-8.
  46. Serge Lang. “Algebra”. Volume 211 of Graduate Texts in Mathematics, pages xvi+914. Springer-Verlag, New York.  (2002). Third edition. doi: 10.1007/978-1-4613-0041-0.
  47. William C. Brown. “Matrices over commutative rings”. Volume 169 of Monographs and textbooks in pure and applied mathematics. Marcel Dekker, Inc., New York.  (1993).
  48. T. J. Kaczynski. “Another proof of Wedderburn’s theorem”. The American Mathematical Monthly 71, 652–653 (1964). doi: 10.2307/2312328.
  49. Robert B. Ash. “Basic abstract algebra: for graduate students and advanced undergraduates”. Dover Publications Inc., New York.  (2013).
  50. Thomas W. Hungerford. “Algebra”. Volume 73 of Graduate Texts in Mathematics. Springer-Verlag, New York.  (1974). First edition. doi: 10.1007/978-1-4612-6101-8.
  51. Tsit-Yuen Lam. “Lectures on modules and rings”. Volume 189 of Graduate Texts in Mathematics. Springer-Verlag, New York.  (1999). First edition. doi: 10.1007/978-1-4612-0525-8.
  52. Rahul Sarkar. “Size of minimal generating set of a module generated by columns of a diagonal matrix with extra structure”. MathOverflow. url: https://mathoverflow.net/q/431397 (version: 2022-09-28).
  53. Arne Storjohann. “Algorithms for matrix canonical forms”. PhD thesis. ETH Zurich. Zürich (2000). doi: 10.3929/ethz-a-004141007.
  54. John A. Howell. “Spans in the module (ℤm)ssuperscriptsubscriptℤ𝑚𝑠(\mathbb{Z}_{m})^{s}( blackboard_Z start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT”. Linear and Multilinear Algebra 19, 67–77 (1986). doi: 10.1080/03081088608817705.
  55. “The XP stabiliser formalism: a generalisation of the Pauli stabiliser formalism with arbitrary phases”. Quantum 6, 815 (2022). doi: 10.22331/q-2022-09-22-815.
  56. “Computing in quotients of rings of integers”. LMS Journal of Computation and Mathematics 17, 349–365 (2014). doi: 10.1112/S1461157014000291.
  57. Rahul Sarkar and Ewout van den Berg. “On sets of maximally commuting and anticommuting Pauli operators”. Research in the Mathematical Sciences 8, 14 (2021). doi: 10.1007/s40687-020-00244-1.
  58. “Nearly optimal measurement scheduling for partial tomography of quantum states”. Phys. Rev. X 10, 031064 (2020). doi: 10.1103/PhysRevX.10.031064.
  59. Pavel Hrubeš. “On families of anticommuting matrices”. Linear Algebra and its Applications 493, 494–507 (2016). doi: 10.1016/j.laa.2015.12.015.
  60. “Extreme values of the Dedekind ψ𝜓\psiitalic_ψ function”. Journal of Combinatorics and Number Theory 3, 33–38 (2011). url: https://www.proquest.com/scholarly-journals/extreme-values-dedekind-psi-function/docview/1728715084/se-2.
  61. “On the Pauli graphs on N-qudits”. Quantum Information & Computation 8, 127–146 (2008). doi: 10.26421/qic8.1-2-9.
  62. Michel Planat. “Pauli graphs when the Hilbert space dimension contains a square: Why the Dedekind psi function?”. Journal of Physics A: Mathematical and Theoretical 44, 045301 (2011). doi: 10.1088/1751-8113/44/4/045301.
  63. “Projective ring line of a specific qudit”. Journal of Physics A: Mathematical and Theoretical 40, F943 (2007). doi: 10.1088/1751-8113/40/43/F03.
  64. “Qudits of composite dimension, mutually unbiased bases and projective ring geometry”. Journal of Physics A: Mathematical and Theoretical 40, F1005 (2007). doi: 10.1088/1751-8113/40/46/F04.
  65. Leonard Eugene Dickson. “History of the theory of numbers”. Volume 1. Carnegie Institution of Washington.  (1919). doi: https://doi.org/10.5962/t.174869.
  66. Jeremy Rickard. “Condition for equality of modules generated by columns of matrices”. MathOverflow. url: https://mathoverflow.net/q/437972 (version: 2023-01-06).
  67. “How to efficiently select an arbitrary Clifford group element”. Journal of Mathematical Physics 55, 122202 (2014). doi: 10.1063/1.4903507.
  68. “Hadamard-free circuits expose the structure of the Clifford group”. IEEE Transactions on Information Theory 67, 4546–4563 (2021). doi: 10.1109/TIT.2021.3081415.
  69. “Differential posets and Smith normal forms”. Order 26, 197–228 (2009). doi: 10.1007/s11083-009-9114-z.
  70. Irving Kaplansky. “Elementary divisors and modules”. Transactions of the American Mathematical Society 66, 464–491 (1949). doi: 10.2307/1990591.
  71. “When are associates unit multiples?”. Rocky Mountain Journal of Mathematics 34, 811–828 (2004). doi: 10.1216/rmjm/1181069828.
  72. Richard P. Stanley. “Smith normal form in combinatorics”. Journal of Combinatorial Theory, Series A 144, 476–495 (2016). doi: 10.1016/j.jcta.2016.06.013.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube