Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shifted Character Sums with Multiplicative Coefficients (1404.2204v2)

Published 8 Apr 2014 in math.NT

Abstract: Let $f(n)$ be a multiplicative function satisfying $|f(n)|\leq 1$, $q$ $(\leq N2)$ be a prime number and $a$ be an integer with $(a,\,q)=1$, $\chi$ be a non-principal Dirichlet character modulo $q$. In this paper, we shall prove that $$ \sum_{n\leq N}f(n)\chi(n+a)\ll {N\over q{1\over 4}}\log\log(6N)+q{1\over 4}N{1\over 2}\log(6N)+{N\over \sqrt{\log\log(6N)}}. $$ We shall also prove that \begin{align*} &\sum_{n\leq N}f(n)\chi(n+a_1)\cdots\chi(n+a_t)\ll {N\over q{1\over 4}}\log\log(6N)\ &\quad+q{1\over 4}N{1\over 2}\log(6N)+{N\over \sqrt{\log\log(6N)}}, \end{align*} where $t\geq 2$, $a_1,\,\cdots,\,a_t$ are pairwise distinct integers modulo $q$.

Summary

We haven't generated a summary for this paper yet.