Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shifted Character Sums with Multiplicative Coefficients, II (1611.06577v1)

Published 20 Nov 2016 in math.NT

Abstract: Let $f(n)$ be a multiplicative function with $|f(n)|\leq 1, q$ be a prime number and $a$ be an integer with $(a, q)=1, \chi$ be a non-principal Dirichlet character modulo $q$. Let $\varepsilon$ be a sufficiently small positive constant, $A$ be a large constant, $q{\frac12+\varepsilon}\ll N\ll qA$. In this paper, we shall prove that $$ \sum_{n\leq N}f(n)\chi(n+a)\ll N\frac{\log\log q}{\log q} $$ and that $$ \sum_{n\leq N}f(n)\chi(n+a_1)\cdots\chi(n+a_t)\ll N\frac{\log\log q}{\log q}, $$ where $t\geq 2, a_1, \ldots, a_t$ are distinct integers modulo $q$.

Summary

We haven't generated a summary for this paper yet.