2000 character limit reached
Kloosterman Sums with Multiplicative Coefficients (1401.4556v4)
Published 18 Jan 2014 in math.NT
Abstract: Let $f(n)$ be a multiplicative function satisfying $|f(n)|\leq 1$, $q$ $(\leq N2)$ be a positive integer and $a$ be an integer with $(a,\,q)=1$. In this paper, we shall prove that $$\sum_{\substack{n\leq N\ (n,\,q)=1}}f(n)e({a\bar{n}\over q})\ll\sqrt{\tau(q)\over q}N\log\log(6N)+q{{1\over 4}+{\epsilon\over 2}}N{1\over 2}(\log(6N)){1\over 2}+{N\over \sqrt{\log\log(6N)}},$$ where $\bar{n}$ is the multiplicative inverse of $n$ such that $\bar{n}n\equiv 1\,({\rm mod}\,q),\,e(x)=\exp(2\pi ix),\,\tau(q)$ is the divisor function.