Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
44 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
83 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Invariance principles for random walks in random environment on trees (1812.10197v3)

Published 26 Dec 2018 in math.PR

Abstract: In arXiv:1609.05666v1 [math.PR] a functional limit theorem was proved. It states that symmetric processes associated with resistance metric measure spaces converge when the underlying spaces converge with respect to the Gromov-Hausdorff-vague topology, and a certain uniform recurrence condition is satisfied. Such a theorem finds particularly nice applications if the resistance metric measure space is a metric measure tree. To illustrate this, we state functional limit theorems in old and new examples of suitably rescaled random walks in random environment on trees. First, we take a critical Galton-Watson tree conditioned on its total progeny and a non-lattice branching random walk on $\mathbb{R}d$ indexed by it. Then, conditional on that, we consider a biased random walk on the range of the preceding. Here, by non-lattice we mean that distinct branches of the tree do not intersect once mapped in $\mathbb{R}d$. This excludes the possibility that the random walk on the range may jump from one branch to the other without returning to the recent common ancestor. We prove, after introducing the bias parameter $\beta{n{-1/4}}$, for some $\beta>1$, that the biased random walk on the range of a large critical non-lattice branching random walk converges to a Brownian motion in a random Gaussian potential on Aldous' continuum random tree (CRT). Our second new result introduces the scaling limit of the edge-reinforced random walk on a size-conditioned Galton-Watson tree with finite variance as a Brownian motion in a random Gaussian potential on the CRT with a drift proportional to the distance to the root.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube