Papers
Topics
Authors
Recent
2000 character limit reached

Linear Koszul duality and Fourier transform for convolution algebras (1401.7186v3)

Published 28 Jan 2014 in math.RT

Abstract: In this paper we prove that the linear Koszul duality isomorphism for convolution algebras in K-homology defined in a previous paper and the Fourier transform isomorphism for convolution algebras in Borel-Moore homology are related by the Chern character. So, Koszul duality appears as a categorical upgrade of Fourier transform of constructible sheaves. This result explains the connection between the categorification of the Iwahori-Matsumoto involution for graded affine Hecke algebras (due to Evens and the first author) and for usual affine Hecke algebras (obtained in a previous paper).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.