Papers
Topics
Authors
Recent
Search
2000 character limit reached

Latent Sentiment Detection in Online Social Networks: A Communications-oriented View

Published 9 Jan 2014 in cs.SI | (1401.2113v1)

Abstract: In this paper, we consider the problem of latent sentiment detection in Online Social Networks such as Twitter. We demonstrate the benefits of using the underlying social network as an Ising prior to perform network aided sentiment detection. We show that the use of the underlying network results in substantially lower detection error rates compared to strictly features-based detection. In doing so, we introduce a novel communications-oriented framework for characterizing the probability of error, based on information-theoretic analysis. We study the variation of the calculated error exponent for several stylized network topologies such as the complete network, the star network and the closed-chain network, and show the importance of the network structure in determining detection performance.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.