Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Equivariant and scale-free Tucker decomposition models (1312.6397v1)

Published 22 Dec 2013 in stat.ME

Abstract: Analyses of array-valued datasets often involve reduced-rank array approximations, typically obtained via least-squares or truncations of array decompositions. However, least-squares approximations tend to be noisy in high-dimensional settings, and may not be appropriate for arrays that include discrete or ordinal measurements. This article develops methodology to obtain low-rank model-based representations of continuous, discrete and ordinal data arrays. The model is based on a parameterization of the mean array as a multilinear product of a reduced-rank core array and a set of index-specific orthogonal eigenvector matrices. It is shown how orthogonally equivariant parameter estimates can be obtained from Bayesian procedures under invariant prior distributions. Additionally, priors on the core array are developed that act as regularizers, leading to improved inference over the standard least-squares estimator, and providing robustness to misspecification of the array rank. This model-based approach is extended to accommodate discrete or ordinal data arrays using a semiparametric transformation model. The resulting low-rank representation is scale-free, in the sense that it is invariant to monotonic transformations of the data array. In an example analysis of a multivariate discrete network dataset, this scale-free approach provides a more complete description of data patterns.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.